Bile salts potentiate adenylyl cyclase activity and cAMP-regulated secretion in human gallbladder epithelium.
نویسندگان
چکیده
Fluid and ion secretion in the gallbladder is mainly triggered by the intracellular second messenger cAMP. We examined the action of bile salts on the cAMP-dependent pathway in the gallbladder epithelium. Primary cultures of human gallbladder epithelial cells were exposed to agonists of the cAMP pathway and/or to bile salts. Taurochenodeoxycholate and tauroursodeoxycholate increased forskolin-induced cAMP accumulation to a similar extent, without affecting cAMP basal levels. This potentiating effect was abrogated after PKC inhibition, whereas both taurochenodeoxycholate and tauroursodeoxycholate induced PKC-alpha and -delta translocation to cell membranes. Consistent with a PKC-mediated stimulation of cAMP production, the expression of six adenylyl cyclase isoforms, including PKC-regulated isoforms 5 and 7, was identified in human gallbladder epithelial cells. cAMP-dependent chloride secretion induced by isoproterenol, a beta-adrenergic agonist, was significantly increased by taurochenodeoxycholate and by tauroursodeoxycholate. In conclusion, endogenous and therapeutic bile salts via PKC regulation of adenylyl cyclase activity potentiate cAMP production in the human gallbladder epithelium. Through this action, bile salts may increase fluid secretion in the gallbladder after feeding.
منابع مشابه
اندازهگیری فعالیت آدنیلیل سیکلاز غشاء سلولی در حضور پروتئین کموتاکسیک ماکروفاژ
Adenylyl cyclase is a membrane-bound enzyme that catalyzes the conversion of ATP to cAMP. The inhibition of adenylyl cyclase was carried out by measuring the ability of the macrophage chemotactic protein-1 to inhibit the forskolin-induced enzyme activity. Measurement of adenylyl cyclase activity was performed according to the procedure described by Wiegn. Adenylyl cyclase activity in the pres...
متن کاملMechanism of bile salt-induced mucin secretion by cultured dog gallbladder epithelial cells.
1. Hypersecretion of gallbladder mucin has been proposed to be a pathogenic factor in cholesterol gallstone formation. Using cultured gallbladder epithelial cells, we demonstrated that bile salts regulate mucin secretion by the gallbladder epithelium. In the present study we have investigated whether established second messenger pathways are involved in bile salt-induced mucin secretion. 2. The...
متن کاملMyelination in the neonatal brain.
244 gallbladder. Like smooth mnscle, canalicular bile tlow is energy dependent. Agents tltat alter the antot, nt of ATI' in the cell sap have a similar effect on bile tlow rate. The rate of bile flow is modulated b)' a hormotte-receptor interaction attalogous to tire contraction-relaxation c)'cle of smooth muscle in which cAMI' and Ca + + are tire chief determinants. The same determinants are t...
متن کاملThrombin and phorbol esters potentiate Gs-mediated cAMP formation in intact human erythroid progenitors via two synergistic signaling pathways converging on adenylyl cyclase type VII.
In intact, but not in permeabilized, human erythroid progenitor cells, thrombin and phorbol esters potentiate cellular cAMP formation in response to Gs-coupled receptor agonists such as prostaglandin E1 (PGE1). We show here that the two agonists achieve their phenotypically similar effects by using distinctly different signaling pathways, both of which require protein kinase C (PKC) activation....
متن کاملVery high aquaporin-1 facilitated water permeability in mouse gallbladder.
Water transport across gallbladder epithelium is driven by osmotic gradients generated from active salt absorption and secretion. Aquaporin (AQP) water channels have been proposed to facilitate transepithelial water transport in gallbladder and to modulate bile composition. We found strong AQP1 immunofluorescence at the apical membrane of mouse gallbladder epithelium. Transepithelial osmotic wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 284 2 شماره
صفحات -
تاریخ انتشار 2003